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Summary 

From both the private and governmental sector there is an increasing interest in carbon credits that can 

be used to offset emitted carbon. Soils constitute the largest terrestrial storage of organic carbon and 

can play a role in mitigating climate change. Soil management practices on arable soils can increase 

soil organic carbon storage, and have co-benefits such as increased soil fertility and resilience to 

climate change. A key obstacle in the development soil-derived carbon credits is the lack of a reliable 

and affordable method to ascertain increases in soil carbon stocks over time. NMI presents a Proof-of-

Concept (PoC) for a robust, cost-effective and scalable method which can ascertain carbon stock at a 

farm-level and even field-level. The protocol has been tested across a number of arable fields in the 

Iowa and Arkansas (United States). We show that this method is effective in ascertaining the carbon 

stock using both satellite and field-derived data. Soil C stocks was estimated robustly with a deviation 

around 5% on farm level, and 5 – 10% on field level. A key asset of this method is that it can rapidly be 

scaled up for other areas across the globe.  
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Summary and conclusions 

In the context of mitigating climate change, there is increasing interest in increasing the carbon stocks 

held in arable soils. The Rabobank requested the NMI to perform a Proof of Concept to quantify the 

carbon stocks of a series of arable fields in Iowa and Arkansas farms. 

The carbon stock was estimated for all (non-)contiguous field sizes (10-64 hectares) on a 10x10 grid 

based on field measurement and machine learning models. Estimated field-level C stock ranges 

between 17 and 55 ton carbon per hectare. Deviation of soil C stocks estimates (as evaluated with 

coefficient of variation) was around 5% on farm level and 5 – 10% on field level. The method can discern 

high levels of spatial heterogeneity in carbon stock within and between fields. Specific areas which are 

marked by e.g. high C stocks can be clearly identified. This detailed quantification can be an asset for 

the verification of carbon stocks in the framework of carbon offsetting. The minimum field for which 

the carbon stocks could be robustly assessed was 10 hectares at a sampling rate of 0.5 sample per 

hectare. Thus, a ten hectare field would require five samples. 

NMI combines the strengths of both satellite-derived data as well as field-derived measurements to 

estimate the carbon stocks. Stratified sampling method cLHS facilitated effective selection of optimal 

measurement locations, while use of handheld scanner with NIR spectroscopy enabled to measure 

many soils at low cost. Furthermore, use of  effective covariates in the machine learning models  (e.g. 

the satellite data and global SOC predictions) enabled to discern local variation of C stock. In future, as 

calibration dataset for the machine learning model increases, even less samples will be needed to 

obtain robust C stock estimates.  

We conclude that the NMI method can be applied robustly, that it attains consistent results and that 

the method is rapidly scalable.  
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1 Introduction 

1.1 Relevance of soils in framework carbon markets   

In the context of mitigating climate change there is an increasing demand for carbon credits across a 

wide range of industries. Considering the economic and political developments (Sikora, 2020), this 

development is likely to persist. Presently, the demand for carbon credits outpaces the supply. Farmers 

can potentially play a role in this market by increasing their soil carbon stocks and thus mitigate climate 

change. This can be done by increasing the amount of soil organic matter (SOM) in soils. This increase 

can have additional co-benefits such as increases in soil fertility and increases in resilience against 

climate change (Smith et al., 2020; Ros, 2021). Presently, the main roadblock for a cost-effective 

implementation of carbon farming is the development of a scalable and robust method that can 

ascertain carbon stock increases over time which can be converted to carbon credits. 

1.2 State of the Art methods carbon stock assessments 

C o m b i n g  s t r e n g t h s  of  b o th  s a t e l l i te  a n d  f ie l d - b a s e d  d a t a  

In order to attain carbon stock estimates, sometimes only satellite-based data are used (Köchy et al., 

2015), or only field-derived data (Nussbaum et al., 2014). Few however, combine both the strength of 

both external (satellite) with field-based (wet-chemical or nearby sensing) analysis (Fujita et al., 2021). 

In this PoC we use both all available satellite data (>50 covariates, being publicly available) as well as 

field-derived data. By combining these resources we can attain robust estimates. 

E f f e c t i v e  a n d  ef f i c i en t  s a m p l in g  

Soils are marked by high spatial variability, and this is reflected in soil carbon stocks (Van der Voort et 

al., 2016). In order to capture this variability and produce accurate stock estimates, it is necessary to 

develop a statistically robust sampling design (Ros, 2019). To further capture the variability with depth 

(e.g. due to rooting depth impacts), the IPCC recommends sampling up to 30 cm depth. If no pre-

analysis is done, a high sampling density is needed (e.g. every 10 meters, Van der Voort et al., 2016).  

This can be costly and time consuming. However, with pre-analysis and robust statistical inferences 

these samplings can be strongly reduced. 

A combination of direct measurements (at the point or field scale) and modelling (at larger spatial 

scales) can greatly help defining the efficacy of land management practices in enhancing soil carbon. 

In this PoC, an analysis is done to develop an optimal sampling protocol which uses as few field-

measurements as possible whilst capturing the highest level of variability. The same protocol has 

already successfully been tested for three Dutch farms with contrasting land use and soil properties 

(Fujita et al., 2021).  
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R o b u s t  m a c h in e - le a r n i n g  m e th o d s  

Multivariate statistics and machine learning methods can be valuable to extract patterns from data and 

then leverage that to predict data (e.g. carbon stocks). However, various methods (e.g. linear regression, 

partial least squares, random forest) each have their own advantages and disadvantages. Therefore in 

this PoC, we used a suite of multivariate and machine learning methods (see 2.4) to model the carbon 

stocks. Using model assessment criteria (e.g. residual mean squared error, RMSE), the optimal model 

was selected. This automated selection is part of the developed method. This way, our results are robust 

and not biased by any method in particular. 

1.3 Objective 

The goal of this project is to provide a Proof of Concept to use the NMI Carbon Stock method to robustly 

determine the carbon stocks in the fields located in Iowa and Arkansas. The results encompass the 

following aspects. 

1. Carbon stock per field on a 10x10 meter resolution 

2. Visualisation of the spatial variability over the fields and variability assessments of the 

underlying data 

3. Assessment of the minimum size of fields for an accurate result 

This goal is attained using both satellite and field-based data, robust sampling protocols and state-of-

the-art machine learning approach. 

We want to stress that the C stock estimation of the original method (described in Fujita et al., 2021) is 

focused on arable farms and encompasses the variation of carbon within and among fields. Field based 

maps illustrating the spatial variability within fields have additional value for the evaluation and planning 

of management options to boost soil carbon levels.  
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2 Material and Methods 

2.1 Sample Locations 

The sample locations locate between 35 to 41.3 ° latitude and -92.0 to 91.6 ° longitude, found in the USA 

states of Arkansas and Iowa. The land use of all fields is agricultural. In Iowa, the fields are characterized 

as a silty loam to a silty clay loam. The parent material is Pleistocene loess, and there is a small slope 

varying between 0-1%. In Arkansas the soils are also classified as silt loam but they’re partly located in 

a hilly area (>10% slope). The parent material is also loess with occasional glacial deposits. Both soils 

are identified as Alfisols. 

•  
Figure 2-1.  Overview Sampling Locations PoC fields. Background map OpenStreetMap. 

2.2 Sampling protocol 

C o v a r i a t e s  f o r  ( p o t e n t i a l )  s a m p l i n g  p o in t s  

To select optimal sampling locations, we made optimal use of available satellite and open soil data to 

select key covariates. This section describes how the data was selected and instrumentalized. For the 

sampling scheme for each farm, the fields are divided in a grid of 10 meter resolution. Each of those 

units is a potential sampling location. See Appendix 6.1 for example maps of these potential sampling 

points. For all these potential locations covariates have been collected that might be related to the 

spatial variation in soil C levels from open source available data sources. 
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For each potential sampling point, a series of covariates were collected. These covariates were selected 

given our earlier evidence from developed machine learning models reflecting spatial variation in soil 

organic matter levels. See full list in Fout! Verwijzingsbron niet gevonden. in the Appendix. 

The private and open source (soil) data for the United States include: 

• Global soil map of ISRIC (‘SoilGrids’) 

• Information on slope and elevation (Digital Elevation Map) 

• Sentinel1 and Sentinel2 Mosaic data  

All information is stored in a raster format, and globally available. Satellite data is processed to calculate 

several indices (incl. VSM, TVI, and SATVI). In total, 47 covariates were retrieved for each potential 

sampling point. 

Prior to the analysis for each farm, covariates were excluded when the variable is available for less than 

99% of the potential sampling points (i.e. >1% is missing value). Subsequently, missing values were 

imputed with the median values of the variable. These missing values occur in only in a few cases and 

imputation is needed to avoid the removal of valuable covariates due to single missing data points. It 

has little impact on the stratification algorithm used. 

O p t i m a l  s a m p l e  l o c a t i o n  se l e c t i o n  u s i n g  cL H S  

Using as few measurements as needed is the key for a robust carbon stock assessment procedure 

because it significantly reduces the overall cost. Presently, the required sampling density is one sample 

per two hectares, being extrapolated from  the Dutch pilot study where this density was required to 

reach the desired precision in farm-level C stock estimates (Fujita et al., 2021).  

Sampling locations should be selected carefully so that it can effectively capture the variation of soil 

properties of the area in question. We use conditioned Latin HyperCube Sampling to determine the 

optimal location of sampling points (Figure 2-1). With cLHS a subset of strata are selected using a 

stratified random procedure based on the multivariate distribution of the covariates (Minasny & 

McBratney, 2006). This will ensure that strata that are closely related to each other will not be measured 

both, making the sampling efficient to estimate a spatial trend. Earlier studies have shown its benefits 

above simple randomized and random stratified sampling methods (Fujita et al., 2021).   
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Figure 2-2.  Visualization of the application of cLHS empowered selection of sampling location. 

 

U s i n g  H a n d H e ld  se n so r  

The HandHeld scanner forms the optimal trade-off between sampling speed, low cost and accuracy. 

Diffuse reflectance NIR spectroscopy has extensively been applied for analyses in very diverse fields 

including, agriculture, geology and soil science. In soil science, numerous studies have demonstrated 

that the NIR spectral range combined with a multivariate calibration method (or any machine or deep 

learning calibration) could be used as a non-destructive rapid analytical technique to simultaneously 

estimate several soil properties (including soil organic carbon) in a very short time. Using these NIR 

sensors it is possible to take a lot more soil samples for SOC analysis within a field at the same time 

for low costs. Assuming a well-designed calibration and validation procedure, the accuracy of NIR 

measurements are comparable with wet-chemistry analysis whereas the precision is usually higher. The 

HandHeld scanner of Agrocares has been selected since it is one of the best sensors currently available. 

F i e l d  s a m p l i n g  p r o t oc o l  

NMI uses optimal sampling strategy to capture the maximum amount of variability whilst reducing the 

amount of samples needed. For each farm, a field analyst went to the cLHS selected sampling locations 

(Figure 2-1). The sampler was presented with obligatory and optional (Figure 2-1) sampling locations, 

where the obligatory were derived via the cLHS algorithm and the optional sampling points were 

selected optimizing sampling area (for the case the sample taker had time left). In each sampling 

location, the sampler noted the XY-coordinate (via a supporting carbon-app coupled to the HandHeld-

scanner) and collected a soil sample of 0-30 cm depth. Each of the soil samples was transported to the 

laboratory and mixed in a bucket and measured with the AgroCares HandHeld scanner. This approach 

proved more time-efficient than mixing and measuring in the field (the common sampling approach), a 

solution triggered by the actual weather conditions and sampling time available. The NMI sampler 

required 15-30 minutes per hectare to do the sampling. The sampling protocol is further described in 

Fujita et al. (2021). 
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2.3 Carbon stock calculation 

E s t i m a t i o n  of  p o i n t - le v e l  C  c o n t en t  

To estimate soil carbon stock of farms, soil organic carbon (SOC) content of every point (of 10 x 10m 

resolution) need to be first estimated. For that, we built prediction models based on the 205 

measurements of SOC (%) determined by the HH scanner and covariates. Here we choose to use the 

difference between the scanner-measured SOC and the SOC of a generic, globally applicable SOC 

prediction model as target variable of the prediction model. The rationale of using the deviation as target 

variable is that the HH scanner can capture local heterogeneity of SOC and thereby it can fine-tune the 

global estimates of SOC (which is available for the whole world but not accurate enough). This also has 

a benefit that the model remains sensitive to a small number of new local training dataset. This is 

because, as the calibration dataset is extended, the model tends to focus on generic patterns and give 

on average a good prediction but fails to make accurate predication on individual farm or field level. If 

we train the deviation of the locally measured SOC from the global, then the model can be fine-tuned for 

the local heterogeneity while preserving the generic patterns of SOC. Thus, NMI can continue to capture 

small scale variability even when upscaling the approach.  

We used the soil map of ISRIC ('SoilGrids’) as our first estimate of SOC since it presents the outcome 

of a globally trained SOC prediction model (https://soilgrids.org/). SoilGrids offers estimates of SOC of 

different depths on 250 x 250 m resolution. The SOC content of 0-30 cm was calculated from the SOC 

content of 0-5cm, 5-15cm, and 15-30 cm, weighted by the depth of the three soil layers. Subsequently, 

we computed the difference between the HH scanner measured SOC and the predicted SOC from 

SoilGrids.  

There are different algorithms to fit data. We tested different algorithms and chose the best among 

them. Tested algorithms were: linear regression, partial least square regression, ridge regression, lasso 

regression, elastic net regression, decision tree, and random forest regression. In addition, we also 

tested different transformations (log-transformation, box-cox transformation, and no transformation) 

of the target variable. The resulting 21 combinations of the methods (algorithms x data transformation) 

were compared with 10-fold cross validation, by randomly splitting the 205 sampling points into 10 

subsets. The method which achieved the smallest RMSE value of the testing sets was chosen. That 

was: the random forest regression model for box-cox transformed target variable. 

Subsequently, SOC (%) of 0-30 cm depth in every grid point was predicted with the random forest 

regression model, built on all 205 measurement points as training dataset.  

E s t i m a t i o n  of  f a r m - l e v e l  C  s t o c k  

Soil carbon concentration of top 30 cm (g C kg-1) was converted to a carbon stock (g C 100m-2) by 

multiplying the soil C content (g C kg-1) with the bulk density (kg m-3), the depth of the soil (m) and the 

area of the grid cell (100 m2).  

The bulk density was estimated from soil organic matter content and clay content based on a well-

known empirical relationship built on a large dataset of Dutch agricultural soils (Fujita et al., 2021). Soil 

organic matter content was estimated from soil C content, using the conversion factor of 0.5, the most 

popular conversion algorithm globally. 

The formula of bulk density estimation is as follows: 

𝐵𝐷 = 𝑐𝑓 ∙ 𝐵𝐷𝑐𝑙𝑎𝑦 + (1 − 𝑐𝑓) ∙ 𝐵𝐷𝑠𝑎𝑛𝑑 

𝑐𝑓 = min⁡(1,
𝐶𝑙𝑎𝑦

25
) 

𝐵𝐷𝑐𝑙𝑎𝑦 = 1000⁡ ∙ (𝑎1 ⁡ ∙ 𝑂𝑆
4 + 𝑎2 ⁡ ∙ 𝑂𝑆

3 +⁡𝑎3 ⁡ ∙ 𝑂𝑆
2 +⁡𝑎4 ⁡ ∙ 𝑂𝑆 +⁡𝑎5⁡) 
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𝐵𝐷𝑠𝑎𝑛𝑑 = 1000 ∙
1

𝑏1 ∙ 𝑂𝑆 + ⁡𝑏2
⁡ 

𝑂𝑆 =
1

0.5
∙ 𝑠𝑜𝑖𝑙𝐶 ∙ 10−3 ∙ 102 

where BD is the bulk density (kg m-3), OS is the soil organic matter (%), soilC is the soil C content (g C 

kg-1), ai and bi are empirically derived coefficient values (Fujita et al., 2021). 

Finally, farm C stock (in unit of ton C) was calculated as sum of soil C of all grids located within  the 

farm. 

H a n d H e l d  s c a n n e r  a n d  e r r o r  p r o p a g a t i o n  

Error propagation is key for the penultimate accurate assessment of carbon stocks, and we also 

propagated the error associated with the field measurements. The AgroCares HH scanner was used in 

the field measurements to determine soil organic C levels. 

Based on previous studies where datapoints were externally validated on a few thousand independent 

sample locations all over the world, we conservatively assume that the measured SOC value of HH 

sensor is associated with an error of  +-30% error rate (1 x standard deviation, SD) for a single SOC 

measurement (in reality, this error is scale dependent). 

For the quantification of the actual C stock, this study strongly depends on the soil organic carbon levels 

determined by the HH scanner. Therefore, we quantified the effect of the HH scanner error on C stock 

estimate with Monte Carlo simulations. Model was trained for the same 205 measurement dataset but 

with a random error of HH scanner (mean 0%, SD ±30%) on the measured SOC, and farm-level C stock 

was calculated with the model.  This procedure was repeated for 100 times, and the uncertainty range 

of the farm-level C stock was quantified.
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3 Results 

3.1 Carbon stocks 

In this section the carbon stock per farm, field and the carbon stock density on a 10x10 meter grid will 

be detailed. 

C a r b o n  s t o c k s  p e r  f a r m  

The carbon stock per farm is shown in Tabel 2-1. Arkansas has much higher C stock (5059 tC) than 

Iowa (2630 tC), due to their larger surface area as well as higher concentration per hectare. The 

coefficient of variation (CV; standard deviation divided by mean), a metric to evaluate the variability, is 

4.3% for Iowa and 5.0% for Arkansas (see Figure 6.3 in Appendix). This is comparably low level of 

variation as the former similar study in Dutch farms (Fujita et al., 2021), indicating that the method used 

can make robust estimates of farm-level C stock. 

 

Table 3-1. Overview of carbon stocks per farm.  Abbreviation tC is short for ton (1.000 kg) of carbon. The tC range 
indicates farm-level C stock uncertainty range (5th and 95th percentiles) associated with HH scanner error. 

Farm Area (ha) C Stock (tC) tC per hectare tC range 

Arkansas 143.0 5059 35.4 32.8-38.7 

Iowa 95.2 2630 27.6 25.4-29.6 

* the total stock is estimated from the total grid area rather than total polygon area.  

 

C a r b o n  s t o c k s  p e r  f ie l d  

The carbon stocks per field are summarized in Table 3-2. The ton carbon (tC) per hectare ranges from 

~17 to ~55. The highest stock is found in Arkansas (field B) whereas the lowest is found in field E. The 

CV of field-level C stock ranges between 5.4% and 9.4%, slightly higher than that of farm-level C stock 

estimates but still below the critical boundaries established by most accreditation protocols (Ros, 

2021). If a higher accuracy is needed on field level, then the sampling density needs to be increased. 
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Table 3-2. Overview of carbon stocks per field. Abbreviation tC is short for ton (1000 kg) of carbon. The tC range 
indicates field-level C stock uncertainty range (5th and 95th percentiles) associated with HH scanner error. 

Field Farm Area (ha) C stock (tC) tC/ha tC/ha range 

A Arkansas 23.4 469 20.1 18.0-22.4 

B Arkansas 64.4 3509 54.5 50.7-60.5 

C Arkansas 10.9 206 18.9 16.6-21.6 

D Arkansas 14.0 280 20.0 17.7-22.4 

E Arkansas 30.4 530 17.4 15.8-19.4 

F Iowa 31.7 688 21.7 19.7-24.4 

G Iowa 53.4 1635 30.6 28.0-33.1 

H Iowa 10.1 294 29.0 24.5-33.6 

* the total stock is estimated from the total grid area rather than total polygon area.  

C a r b o n  s t o c k s  d en s i ty  o n  a  1 0 x1 0  m e te r  g r i d  

The model shows the carbon density on a 10x10 meter grid for all fields.   
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Figure 3-1. Overview of carbon stocks for fields. Note the total area in fields varies from 10-64 hectares. Note, legends 
differ per field. 

3.2 Spatial Variability 

We see significant spatial heterogeneity both within fields as well as between fields. Figure 3-2 shows 

the range of carbon stock values that can be found within the individual fields on a 10x10 grid. Field B 

shows high internal variability, which is in line with the high variability in the field measurement of carbon 

within this field.  
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Figure 3-2. Overview of the variability of carbon stock within specific fields. The box represents the 75th up to 25th 
percentile range, the line the median. The error bars indicate the 1,5 interquartile range above and below the 75th and 
25th percentile ranges. Points indicate outliers.  

3.3 Sampling area size 

With a sampling density of 0,5 samples per hectare, the smallest field size included in this study is ten 

hectares. This translates to five samples on a ten hectare field. We tested whether this sampling density 

leads to a robust field-level C stock estimate, using repeated random sampling with varying sampling 

density for 100 times each. Coefficient of variation (CV%) in predicted field-level C stock was used to 

assess the model precision under different sampling density (i.e. the lower the CV, the better). The 

results showed that the CV levels off when the sampling density increases till ca. 0.5 per hectare, even 

for the small fields (C, H) (Figure 3-3). This indicates that a field size of 10 ha is sufficient to achieve 

robust estimate of field-level C stock, given the sampling density of 0.5 sample per hectare. 

Potentially, robust estimates for smaller fields would also be achieved by increasing the sampling 

density. It should be noted that the required sample number or field size depends highly on the field 

properties (such as the spatial heterogeneity in covariate values within the field, similarity of covariate 

values compared to other fields in the calibration dataset). Further tests are needed to provide definitive 

answers for the required minimum field size. 
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Figure 3-3.The coefficient of variation (CV%) in predicted field-level C stock versus the amount of samples per hectare 
taken. The CV is a measure of model precision, the lower the better. The CV levels off around 0.5 sample/ha, even for 
the smallest field (10 ha). 
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4 Conclusion and outlook 

In this report we have provided robust carbon stock estimates for a range of fields in Arkansas and 

Iowa, in the USA. For the Arkansas farm, the average is ~35 ton carbon per hectare, for Iowa it is ~28. 

The carbon stocks in the individual fields range between ~17 to ~55 ton carbon per hectare.  We also 

show that our method captures intra-field variability and that it is therefore detailed enough to capture 

changes in carbon stock over time. The minimum field size needed for robust estimates is 10 hectares 

with a sampling density of 0.5 samples per hectare. The method presented here is robust, precise and 

scalable for other carbon sequestration projects across the globe. 

 

As an outlook, we would like to highlight that a number of avenues that can be explored to further expand 

the reach of the method. First, we can test how fast and to what degree we can reduce the sampling 

density (now 0.5 samples/hectare) when we measure larger fields or fields with low degree of 

heterogeneity. Furthermore, we could explore if one always needs to take the entire 30 cm (more time 

consuming) or of the top 10 cm or even top 5 cm would also suffice (less time consuming). We might 

also explore the use of the handheld predictions for the dry bulk density rather than the use of generic 

pedotransfer-functions for bulk density, in particular since these bulk density estimates might differ 

within and among fields. Last but not least, we could test a larger range of individual field sizes, focusing 

specifically on smaller fields <10 hectares, which have not been included yet in this study.  
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6 Appendix 

6.1 Overview of cLHS sampling selection approach 

 

Figure 6-1 shows the area of Field A, potential sampling points on a 10x10 grid, the cLHS seleced 

sampling points and the resulting carbon stock map. 

 

 

Figure 6-1. Visualisation cLHS sampling technique. Window A shows Field B in Arkansas, window B shows potential 
sampling locations, window C the selected sampling locations, and window D the resulting carbon stock estimates. 
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6.2 Precision of estimated farm C stock 

Using the Monte Carlo approach, the uncertainty on the estimated C stock per farm has been estimated 

for scenarios that vary in sampling density. This is done for prediction models that are build on data 

from the selected farm only (scenario “farm”) as well for the situation that measurements from the other 

farm are also used for calibration (scenario “all”). For the exact procedure to estimate this CV, we refer 

to the method described by Fujita et al. (2021). In both cases, a sampling density of around 0.5 samples 

per hectare gives a precision of around 5% of the estimated C stock. 

 

 
Figure 6-22. The Coefficient of Variation (CV, %) of the carbon stock for the two farms in Iowa and Arkansas. The CV 
of the carbon stock that uses data from the previous field campaigns (scenario “all”) reaches the threshold of 5% 
around a sampling density of 0.5 samples per ha.   
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6.3 Overview of covariates 

Complete overview of all covariates is shown below. Covariates for which >1 % was unknown (NA) were 

removed. This concerned s2_TVI_7_2020 and s2_TVI_10_2019. Finally, 45 covariates were used to 

optimally predict carbon stocks. 

 

Table 6-1. Overview of used covariates in models. 

Variable Number of unknowns (%) Resolution 

s2_TVI_4_2019 0.6 10m 

s2_TVI_4_2020 0 10m 

s2_TVI_4_2021 0 10m 

s2_TVI_7_2019 0 10m 

s2_TVI_7_2020 16 10m 

s2_TVI_7_2021 0 10m 

s2_TVI_10_2019 35.6 10m 

s2_TVI_10_2020 0 10m 

s2_B11 0 20m 

s2_SATVI 0 20m 

s2_BI2 0 10m 

sg_bdod_0_5_mean 0 250m 

sg_bdod_15_30_mean 0 250m 

sg_bdod_5_15_mean 0 250m 

sg_cec_0_5_mean 0 250m 

sg_cec_15_30_mean 0 250m 

sg_cec_5_15_mean 0 250m 

sg_cfvo_0_5_mean 0 250m 

sg_cfvo_15_30_mean 0 250m 

sg_cfvo_5_15_mean 0 250m 

sg_clay_0_5_mean 0 250m 

sg_clay_15_30_mean 0 250m 

sg_clay_5_15_mean 0 250m 

sg_nitrogen_0_5_mean 0 250m 

sg_nitrogen_15_30_mean 0 250m 

sg_nitrogen_5_15_mean 0 250m 

sg_phh2o_0_5_mean 0 250m 

sg_phh2o_15_30_mean 0 250m 

sg_phh2o_5_15_mean 0 250m 

sg_sand_0_5_mean 0 250m 

sg_sand_15_30_mean 0 250m 

sg_sand_5_15_mean 0 250m 

sg_silt_0_5_mean 0 250m 

sg_silt_15_30_mean 0 250m 

sg_silt_5_15_mean 0 250m 
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Variable Number of unknowns (%) Resolution 

elevation 0 10m 

slope 0 10m 

aspect 0 10m 

vsm_4_2018 0 20m 

vsm_4_2019 0 20m 

vsm_4_2020 0 20m 

vsm_7_2018 0 20m 

vsm_7_2019 0 20m 

vsm_7_2020 0 20m 

vsm_10_2018 0 20m 

vsm_10_2019 0 20m 

vsm_10_2020 0 20m 

 

 

  



 

Report 1651.N.21 Rabobank PoC Carbon Monitoring (draft version 04-01-2022) 21 

 

 

 

 

 

Nutriënten Management Instituut BV 

Nieuwe Kanaal 7c 

6709 PA Wageningen 

 

tel: (06) 29 03 71 03 

e-mail: nmi@nmi-agro.nl 

website: www.nmi-agro.nl 

soil for life 

mailto:nmi@nmi-agro.nl
https://www.nmi-agro.nl/

